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Abstract

This paper presents a finite element model for analyzing the composite laminates containing the piezoelectrics sta-
tistically or dynamically. First, to model the moderately thick laminated plates, a simple higher-order plate theory,
which can satisfy the free conditions of transverse shear strains on the top and bottom surfaces of plates, have been
adopted. To set up a C’-type FEM scheme, two artificial variables in the displacement field have been introduced to
avoid the higher-order derivatives from the higher-order plate theory. The corresponding constraint conditions from
two artificial variables have been enforced effectively through the penalty function method using the reduced integral
scheme within the element area. Second, a generalized coupling FEM model for the mechanical and electric fields from
the variational framework have been proposed. Finally, various examples studied in many previous researches have
been employed to verify the justification, accuracy and efficiency of the present model. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The development of a new class of “smart” composite materials and adaptive structures with sensory/
active capabilities may further improve the performance and reliability of aeronautical structural systems.
Such materials can combine the superior mechanical properties of composite materials, as well as incor-
porate the additional inherent capability to sense and adapt their static and dynamic response. Until now,
there have been many theories and models for analyzing composite laminates containing active and passive
piezoelectric layers. One approach, which uses simplifying approximations attempting to replicate the
“induced strain” or electric fields generated by a piezoelectric layer under an external electric field or ap-
plied load (see, Crawley and Lazarus, 1989; Tzou and Tseng, 1990; Keilers and Chang, 1995; Chatto-
padhyay and Seeley, 1997; Seeley and Chattopadhyay, 1999). However, through an exact solution for
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piezoelectric laminated plates, Heyliger and Saravanos (1995) has pointed out that the electric and elastic
field distributions may be poorly modeled using these simplifying theories. Therefore, another approach
starting from the variational methods, which can tackle the coupling effects of mechanical and electric fields
more efficiently, have also been paid widespread attention (see, Suleman and Venkaya, 1995; Saravanos
et al., 1997; Lee and Saravanos, 1997, 2000; Correia et al., 2000; Chee et al., 2000). To model the defor-
mation of laminated plates, the approaches, which based on the classical laminate beam or plate theory
(e.g., Crawley and Lazarus, 1989; Keilers and Chang, 1995), have been initially developed. These ap-
proaches should be restricted to thin plate applications since the linear strain distribution through the
thickness and zero transverse shear stresses are assumed. However, effects of transverse shear stresses are
usually important in composite laminates. Furthermore, the stress distributions in structures actuated by
piezoelectric materials are known to be quite complex (see, Mollenhauer and Griffen, 1994). Physically, the
assumption of a linear strain distribution through the thickness of a substrate material, undergoing induced
strain actuation from piezoelectric materials, seems oversimplified, especially for thick plates. As a result, it
is necessary to use a shear deformation theory to address moderately thick and thick laminate construc-
tions. The first-order shear deformation theory (e.g., Tzou and Tseng, 1990; Suleman and Venkaya, 1995;
Tzou and Ye, 1996) has been used for modeling the laminates with piezoelectric actuation using the FEM.
Furthermore, the layerwise theory (see, e.g., Robbins and Reddy, 1991; Saravanos et al., 1997; Lee and
Saravanos, 1997, 2000) and a three-dimensional (3D) coupled-analysis model (e.g., Ha et al. (1992) in FEM
and Bisegna and Maceri (1996) in closed form theoretical solutions) have also been advocated. Kim et al.
(1997) also proposed a numerical model, in which 3D brick elements are employed for piezoelectrics and
flat-shell elements for structures. For these approaches, the more accurate representation of piezoelectric
actuation and transverse shear stress distribution can be obtained. For instance, Robbins and Reddy (1991)
and Saravanos et al. (1997) have shown the differences between the classical theory and the more so-
phisticated, but computationally expensive layerwise theory.

To model the moderate thick composites with surface bonded or embedded actuators, it is important
to have a more effective general theory for accurately evaluating the effects of normal and transverse shear
stresses on actuator or sensor performance. It has long been recognized that higher-order laminate theories
may provide an effective solution tool for accurately predicting the deformation behavior of composite
laminates subjected to bending loads. Some recent researches (see, e.g., Chattopadhyay and Seeley, 1997;
Seeley and Chattopadhyay, 1999; Gaudenzi, 1998; Correia et al., 2000; Chee et al., 2000) have applied the
various higher-order theories to model the laminated plates with piezoelectrics. For instance, Gaudenzi
(1998) used a simple higher-order beam theory and solved the pure bending problem of a beam under
membrane actuation in a closed form. Furthermore, Correia et al. (2000) and Chee et al. (2000) used the
higher-order theory (Lo et al., 1977) in their FEM models, which considered the transverse normal strain.
They have also shown the insufficiency of the first-order shear deformation theory in the adaptive structural
modeling. In this higher-order plate theory, there are full third-order expressions for the in-plane dis-
placements and a full second-order expression for the transverse displacement. Consequently, the free
conditions of transverse shear stresses at the free plate surfaces cannot usually be guaranteed and the re-
sulted FEM models possess high nodal degrees of freedom. Hence, the computational amounts are com-
paratively high in these models. Chattopadhyay and Seeley (1997) and Seeley and Chattopadhyay (1999)
employed a simple higher-order plate theory by Vlasov (1957) and Reddy (1984). In this theory, the con-
sistent displacement field can accurately satisfies the free boundary conditions of transverse shear strains
at the free surfaces while maintaining continuity of transverse shear strains through the thickness. The
developed FEM model possesses a reasonable amount of computational effort compared to classical or
first-order shear deformation theory. However, a non-conforming element technique only suitable for ele-
ments of the rectangular shape was employed. This element cannot pass in the constant strain patch test for
the irregular shaped elements. It is well known that the common FEM models based on the piecewise
continuity perform poorly in the computation of derivatives, especially higher-order derivatives. To obtain
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stable results, the C°-type elements are generally desirable. Furthermore, the so-called “induced strain”
simplifying approach was employed in their researches by neglecting the coupling effects of mechanical and
electric fields.

In this paper, to model the moderately thick composite laminates containing piezoelectrics, a C°-type
element based on the simple higher-order theory by Vlasov (1957) and Reddy (1984) has been developed. It
should be noted that the displacement field in this theory was derived for non-piezoelectric materials based
on zero transverse strains in the top and bottom surfaces. For structures where the piezoelectrics materials
may be on the top and bottom surfaces, due to the coupled constitutive equations, these zero transverse
shear strains do not imply zero transverse shear stresses. Also, the variational framework, which couples
the influences of the mechanical and electric fields, has been adopted for better predicting the response of
sensors. Furthermore, various verifications from the previous researches for the present model have been
carried out.

2. Theory
2.1. Kinematics and constitutive relationships

As stated previously, a simple higher-order plate theory has been adopted here. The third-order dis-
placement fields in this theory can be found from Reddy’s work (1984), which are cited as follows:

u(x,,2) =u0+z{0x—§(%)2<9x+aa—;”)] (1a)
o(x,y,2) =Uo+z[0y—g(%)2(9y+aa—;v>] (1b)
w(x,y) = wp (Ic)

where uy, vy and wy are the displacements on the mid-plane plane, and 0, and 0, the rotations due to shear
deformation about the y and x axes, respectively.

Since the transverse normal stress is of the order (h/a?) times the in-plane normal stresses, the as-
sumption that w(x,y) is not a function of the thickness coordinates is justified. The above displacement
fields can be derived from a complete third-order expansion of the displacement field using free conditions
of the transverse strains on the top and bottom surfaces of plate, i.e., &.(x,y, £(%/2)) = 0 and ¢, (x,y, £
(h/2)) = 0. Vlasov (1957) and Jemielita (1975) are the first ones to derive the above third-order theories.
Some other researchers, such as Murthy (1981) and Reddy (1984), applied the above theory into the
laminated composite plates. Reddy (1984) is the first one to derive variationally consistent third-order
theory for composite laminates.

Under the above displacement field description, the strains associated with the displacements in Egs.
(1a)—(1c) can be described as follows:

e, 3,2) = &) + 2(k] + 2'1)) (2a)
&(x,»,z2) = 82 +Z(K2 +ZZKJ1,) (2b)
eo(x,3,2) = 82}, + z(;cgy + zzxi},) (2¢)

&(x,,2z) =0 (2d)
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e(x,,2) = &), + 2K, (2e)
e(X,9,2) = & + 22K (2f)
where
Ou v
(Y 0o_>%
B BT (3a)
Ouy Ov
o _ 0, Y0
&y = o T (3b)
o0 o0
o_ 9% o_ 9%
x ax 9 Ky - ay (30)
00, o0
o _ 9%  OUy
o = oy + Ox (3d)
4 (00, O*w 4 (00, Ow
1 _ JE— _x _ 1 = —_—— —} —_—
V% ( > o )’ o 32 ( dy + 02 > (3¢)
4 (06, 06, Pw
| L Rt DI )
o T T3 ( > ox T axay> (31)
ow ow
0 _ hdd 0 _ -
b = Ot 30 w =0ty (32)
4 ow 4 ow
1 _ 1 _
sz__ﬁ<0x+_x>7 K}z__ﬁ<0y+a> (3h)
The linear piezoelectric constitutive equations coupling the elastic field and the electric field, can be
written as
6=Qz—¢E (4a)
D =¢"¢ +pE (4b)

where ¢ = {0, 0,0, 0,, O'XZ}T is the elastic stress vector and € = {e,, &,, &y, &, SXZ}T the elastic strain vector
as stated above. Q the elastic constitutive matrix in the laminate (x,y,z) coordinate system, € the piezo-
electric stress coefficients matrix in the same coordinate system, E the electric field vector, D the electric
displacement vector and p is the dielectric matrix.

The stresses for an arbitrary ply &, written in the laminate (x, y,z) coordinate system are evaluated by

o, = Q5 — &E; (5)

In this research, due to no consideration of ., Q, matrix can be described as follows
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The electric field vector E; in the kth ply is the negative gradient of the electric potential, i.e.
E, = -V, = {0,0, £} (8)

where it is assumed that the electric field is applied through the thickness direction and E7, is the electric field
in the thickness direction, which can be written as

E = —¢, /1 )

where ¢, is the electric voltage applied across the kth layer and # is the thickness of the kth layer.
Eq. (5) can also be expressed as

o = Q. (& — diEy) (10)

where d, is the piezoelectric strain coefficient matrix in the (x,y,z) coordinate system, for the kth layer,
related with €, by

& = Q,d; (11)
The dielectric matrix p is chosen here as
0 0 O
p=1(0 0 O (12)
0 0 p33

where ps; is the electrical permittivity.
2.2. Finite element implementation

The second-order derivatives of displacement appear in the strain—displacement relationships, implying
that displacement-based elements of C'-continuity are generally necessary in the finite element procedure.
To derive a weak form of the principle of virtual work suitable for finite element implementation using C°-
shape functions, a strategy has been proposed here to introduce additional nodal degrees of freedom and to
enforce the kinematics constraints by penalty parameters.

Introduce a vector y as follows

T [ow ow)"
1={n) = oy (13)

Then, the higher-order curvature and transverse shear terms in Egs. (3a)—(3h) become as
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4 (00, oy 4 (00, 0
(9% 9% (9% T 14
s 3h2(6x+6x>’ o 3h2<6y+6y> (142)
4 (00, 00, oy O
(2, 2y Py Y
Yo T T3 ( o T ax Ty o ) (14b)
8)(:_7 = 9-’( + Xx? 85)7 = 0,\/‘ + Xy (140)
4 4
K,)l(z = _ﬁ (0‘6 + Xx)? K)l,z = _ﬁ (Qy + Xy) (14(1)

The constraint conditions , = y, — (dw/0x) = 0 and ¥, = y, — (Ow/dy) = 0 will be tackled in the principle
of virtual work through the penalty function method.

This technique is of generality for dealing with the higher-order derivatives in some special problems.
For example, in the strain gradient problem, which caused the interests of many researchers, there are
usually second-order derivatives in most of strain gradient theories, such as those starting from the pio-
neering Coesserat couple stress theory or Toupin-Mindlin theory. Then, the usual C!-type FEM schemes
have been adopted widely. Unfortunately, till now, no robust C!-continuous elements are available in the
present literature, and their performances are usually poor in such as delivering the accurate pressure
distribution for incompressible and non-linear solids or describing the shear strains at the crack front for
Model II crack problems (Shu et al., 1999). Actually, the present idea can be employed in this kind of field
when higher-order derivatives appear. Now, the nodal displacement vector is u¢ = {uj), v}, wi, 0., 0;,, 7L ;(;}T,
i.e. the 7 degrees of freedom on one node, which are the same with that in the FEM model (Chattopadhyay
and Seeley, 1997; Seeley and Chattopadhyay, 1999), but lower than those in the models (Correia et al.,
2000; Chee et al., 2000).

Then, the mechanical and electrical response of piezoelectrics can be obtained through applying the
principle of virtual work to the equation of balance of momentum in the elastic field and the Maxwell’s
equation D;; = 0 in the electric field. For an arbitrary element of volume V., the modified principle of the
virtual work due to introduction of the constraint conditions can be described as

/V (5e"Qe — de"eE — SE"e"e — SE'PE + 3y D\ + pdu'ii)dV — S, + Wy = 0 (15)
where { = {y_, l//y}T and D, is the penalty matrix, which can be expressed as

o, 0
n=[5 ¢] "
The choice of penalty parameters «, and «, will be discussed later.

It can found that there is no second-order derivative in the above principle of virtual work. It is also
interesting to note that there is no unknown w occurring in the first four terms of Eq. (15). It exists only in
the penalty term. Performing the integral of Eq. (15) through the plate thickness direction, the following
equation can be obtained

h/2 h/2
/ 56D, — 55" Te'E — SETe e — / (SETPE) dz + / (SU D) dz
Se —h/2 —h/2
h/2
+/ (pouTii) dz| dS — 8, + 87, = 0 (17)
—h/2
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where S, is the element area, / the total thickness of the current element, and the generalized strain vector &*
can be expressed as

g = {e" k" k' & k! (18)
where
e ={e, &), e} (19a)
0 0 T
K = {Kl,Ky,ny , K = {Kx,xy,rcx) (19b)
8 - { yz7 &l s K _{ )27 xz} (190)
For the nodal displacement vector u¢ = {u}), v), wi), 0., 0;, s xy} at the ith node, the strain-displacement
matrix B for the generalized strain vector can be expressed as
[ ON; /Ox 0 0 0 0 0 0 i
0 ON;/dy 0 0 0 0 0
aN,/dy ON,/ox 0 0 0 0 0
0 0 0  oN/ox 0 0 0
0 0 0 0 ON; /0y 0 0
_ 0 0 0 ON, /0y 0N, /0x 0 0
B, = 0 0 0 (c/3)(0N;/0x) 0 (¢/3)(0N;/ox) 0 (20)
0 0 0 0 (¢/3)(0N:/0y) 0 (c/3)(0N;/dy)
0 0 0 (¢/HEN/D) (c/3@N/) (c/3)(@N/y)  (e/3)(ON:/x)
0 0 0 N; 0 N; 0
0 0 0 0 N; 0 N;
0 0 0 cN; 0 cN; 0
| 0 0 0 0 cN; 0 cN; |

where ¢ is a constant, i.e. —4/h*. The final strain—displacement matrix is expressed as
B, = [B},...,B},..., B} (21)

where nd is the number of nodes in one element.
In the Mindlin type element, the transverse shear terms like those in Eq. (3g), and the strain—displace-
ment matrix for the nodal displacements u¢ = {u}, vi,, wi), 0", 0'}" i

X7y
0 0 dN;/ox N, 0

Bus=10 0 an/oy 0 N,

(22)

For thin plate situation the transverse shear strains should tend towards zero, and the shear strain energy
terms play a role of penalty functions to force this conditions to be satisfied. If the full integration is carried
out, due to the different orders of functions (i.e. unmatching) in the two entries of one row in Eq. (22), these
penalty conditions cannot be exactly satisfied numerically, which leads to the overstiff results, i.e. the so-
called “locking” phenomenon. Generally, it is overcome using the reduced integration scheme. However,
by noting the 10th and 11th rows for the transverse shear strains in Eq. (20), unlike the Mindlin plate
element, there is no derivative in the transverse shear terms. The orders of the interpolation functions
are identical and no unmatching appears when performing the full Gauss integration scheme. A merit of
the present technique is that the accurate integration for the energy due to transverse shear terms can be
obtained, and the reduced Gauss integration is unnecessary at this stage.
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Further, the material matrix D, which related the generalized strain components with the generalized
stress resultants, can be described as

A B

= =]

(23)

@

O ZZ
I
>
M—X-
I

B D
G F
0 0
0 0

coIIT TR
= >

CR oo
PSR R o

%

S

where the generalized stress components are: N = {Nx,Ny,ny}T, M= {Mx,My,Mxy}T, P= {Px,Py,ny}T,

Q=1{0:,0.}", R={R,R..}", respectively.
The material sub-matrices in Eq. (23) can be obtained from

h2
(A,B,D,G,F,H) = " Q. (1,2,2,2,2* 2% dz (24a)
2
(Ag, B, Dy) = Qk(l,zz7z4) dz (24b)
—h/2

Furthermore, the € matrix can be expressed as
e ={e,e,....e,....e} (25)

where npl the number of piezoelectric layers within the current element, and the sub-matrix €, can be
obtained from

[ ( fsz 6[; dz) d, |
( fsz 6272 dz) d,

€ = 12 < (26)
(0 Q)

0

0

where the above integrals are only performed for the piezoelectric layers. Also, the dimensions of zero
matrices 0 in Eq. (26) are 2 x 3, and the d; matrix is given by

—k

oo @,
&= 10 0 a, (27)
00 0

In the present element, the electric potential within one piezoelectric layer of one element is assumed to be
constant in the x—y plane for simplicity (see, Suleman and Venkaya, 1995; Correia et al., 2000), and then E
matrix can be predicted as follows

E = B¢ (28)

where B, is expressed as
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0 0 O
0 0 O
0 0 1/4
0 0
B, = 0 0 (29)
0 1/%
0 0 0
0 0 0
I 0 0 1/twy|
and ¢° is
¢e:{¢la~~-v¢ka"'7¢npl}T (30)

Here, as some authors did previously (Suleman and Venkaya, 1995; Correia et al., 2000), the electrical field
along the thickness direction is also assumed to be constant within each layer for saving the computational
amount. This may be very approximate when the piezoelectric layer is thick. Some other authors, such as
Saravanos et al. (1997), Chee et al. (2000) and Lee and Saravanos (2000), used the assumption of linear
distribution of electrical potential along the thickness direction within one layer. Our later numerical
example shows that the assumption of the constant electrical potential within one layer is reasonable by
comparing with the layerwise approach (Lee and Saravanos, 2000) and 3D FEM of ABAQUS.
The penalty terms are described as follows

¥ =Byu’ (31)
where B, is written into the following form
B, =[B,,...,B,,...,B}] (32)

and

00 N, —0N/&x 0 0 0

B=1lo o n 0  —anjoy 0 0

(33)
For the penalty stiffness matrix, due to unmatching of the orders of the interpolation functions by ob-
serving Eq. (33), the reduced integration technique has been adopted to avoid the locking phenomenon
caused by penalty terms. The main problem caused by the reduced integration scheme is that it may in-
troduce the spurious modes into the elemental stiffness matrix in some cases. After checking the eigenvalues
of an elemental stiffness matrix, we found that the reduced integration scheme has not introduced the
spurious modes into the present elemental stiffness matrix. Therefore, it was finally adopted due to its
simplicity and lower computational cost.
Finally, the system equation can be written as

N G e el G- 6

in which the system matrices are assembled from the elemental matrices, which are expressed as
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+1 +1 h/2
K, =K’ + K‘ / / BTD By det Jdédy +/ / </ BiDpBw dz) det Jdédy  (35a)

—h/2

+1
K, = / / Bje'B, det Jd¢dy (35b)
+1 /2
K¢, = / / ( /_ h/ngpB¢dz> det Jdédy (35¢)
+1 4l h/2
M, = / / < / pNTNdz> det Jdédy (35d)
-1 -1 —h/2

Two kinds of elements, i.e. four-node and nine-node elements with Lagrange interpolation functions
have been made. The penalty parameters «, and «, are chosen as follows from our numerical experiences

o, = o, = max([K},|;) x x (10°-10%) (36)

i.e. 10°-10° times the maximum of the absolute value of entries of the matrix K¢, as shown in Eq. (35a).

In practice, voltage may also be specified as input to the actuators. The electric charge at the sensors Fy
should remain constant with time (practically open-circuit conditions) and is assumed equal to zero. As a
general condensation procedure, the final equation can be cast into the following form

M, i+Ku=F, —F4 (37)
where K* and actuator force vector F, can be written as

K =K, — KK Ky,  Fa=Kgb, (38)
The electric potential of sensors due to deformation can be obtained as

O = _K@;Kd)u“ (39)

Further inspection of Eq. (37) reveals that the “induced-strain” approaches, in the presence of sensors,
neglect the coupling effects on both the stiffness and the induced piezoelectric force. This may lead to some
different results as discussed in the following numerical examples. The above dynamic system can be solved
to obtain either the modal characteristics, or the forced frequency response or the transient response of the
piezoelectric composite laminates.

3. Verifications
3.1. Piezoelectric bimorph beam

A numerical application has been used to validate the developed numerical models both as an actuator
and a sensing mechanism, which is based on an experiment (Tzou and Tseng, 1990) and analytical results
(Suleman and Venkayya, 1995; Correia et al., 2000). The experiment consists of a cantilevered piezoelectric
bimorph beam with two PVDF layers bonded together and polarized in opposite directions with dimen-
sions indicated in Fig. 1. The mechanical and piezoelectric properties of the PVDF used are: E|; = Ex» =
E33 =2 GPa, G12 = G13 = G23 =1 GPa, Vip = U3 = V13 = 00, e3] = ez = 0.0460 C/mz, and P33 = 0.1062 x
10~° F/m. The es; coefficient in all models is assumed to be zero.
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Clamped I\‘ )

1 mm
5 mm
Fig. 1. Piezoelectric bimorph beam.

Table 1

Comparison of deflections induced by actuators
Location x (mm) Deflections (10~7 m)

20 40 60 80 100

Present (nine-node element) 0.139 0.553 1.24 2.21 345
Present (four-node element) 0.139 0.553 1.24 2.21 3.45
Theory (Tzou and Tseng (1990)) 0.138 0.552 1.24 2.21 345
Plate FE (11 DOFs) (Correia et al. (2000)) 0.138 0.552 1.24 2.21 3.45
Plate FE (9 DOFs) (Correia et al. (2000)) 0.138 0.552 1.24 2.21 3.45
Shell FE (FDST) (Tzou and Ye (1996)) 0.132 0.528 1.19 2.11 3.30
Plate FE (FDST) (Suleman and Venkaya (1995)) 0.14 0.55 1.24 2.21 345
Analytical (Correia et al. (2000)) 0.13 0.51 1.14 2.02 3.16
Experimental (Tzou and Tseng (1990)) - - - - 3.15

First, the beam is directly discretized into five equal nine-node plate elements in order to compare
with alternative results. Also, 20 equal four-node plate elements are adopted in the present computa-
tion. When piezoelectric material is used as an actuator with an electric potential of 1 V, the deflections
produced are shown in Table 1. For comparison, the results obtained from two nine-node plate elements
(Correia et al., 2000) using a higher-order theory (with 11 or 9 degrees of freedom at one node, respec-
tively), the results of the shell and plate element based on the first-order shear deformation theory, the
results of theoretical solution and experimental results are also employed. From this table, it can be found
that the present results are in very good agreement with other results. Also, for this example with sim-
ple deformation, the present four-node element can yield the almost same results with the nine-node ele-
ment. In the following all numerical examples, only results of the nine-node element are illustrated for
simplicity.

The sensing voltage distribution of the bimorph beam for a prescribed deflection is also analyzed. The
voltage distribution for an imposed tip deflection of 10 mm is given in Table 2. It can be observed a good
agreement between the present element voltages with the alternative solutions. The slightly lower sensed
voltages in the nine-node element with 11 degrees of freedom (Correia et al., 2000) can also be identified.
Furthermore, for two finite element meshes with 5 and 20 elements, the sensed element voltages along the
beam obtained from the present element and those of the nine-node element (9 degrees of freedom at one
node) of Correia et al. are shown in Fig. 2.
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Table 2
Comparison of sensory voltages induced a prescribed tip deflection
Element number Sensed voltage (V)
1 2 3 4 5
Present (nine-node element) 290 226 161 97 32.0
Plate FE (11 DOFs) (Correia et al. (2000)) 276 214 153 92 32.0
Plate FE (9 DOFs) (Correia et al. (2000)) 290 226 161 97 32.0
Plate FE (FDST) (Suleman and Venkaya (1995)) 290 - - - -
400
150 [ —@— Present ( 5 9-node Ele)

—— Present (20 9-node Ele)
—X— Plate FE ( 5 Ele) by Corria et al. (2000)
—+— Plate FE (20 Ele) by Corria et al. (2000)

300

260

200

Volt

150

100

50

L L 1 L 1 L L
0 20 40 60 80 100
Distance (mm)

Fig. 2. Comparison of sensed element voltages for tip deflection of 10 mm.

3.2. Clamped plate with piezoelectric ceramics under thermal loading

The third example is taken from the work (Lee and Saravanos, 2000). The clamped carbon/epoxy plate
with a thin piezoelectric upper layer is shown in Fig. 3, which is under uniform 50°C thermal loading. The
carbon/epoxy portion consists of eight 0° plies and dimensions are shown in Fig. 3. The material properties
of carbon/epoxy are listed as: E|; = 142.0 GPa, Ey» = 10.3 GPa, G, = G5 = 7.2 GPa, Gy; = 4.29 GPa,
v = 0.27, o5y = —0.9 (um/m°C), and oy, = 27.0 (um/m°C), where o is the thermal expansion coefficient.
The material properties of the piezoceramic are: E;; = 69.0 GPa, E,, = 69.0 GPa, G, = Gj3 = Gy = 26.5
GPa, Vip = V13 = U3 = 030, oy = Opp = 1.2 (pm/mOC), P33z = 0.1062 x 1079 F/m, d3| = —154.0 pm/V and
d32 =0.0 pm/V

When the piezoelectric is used as an actuator, the centerline deflections (y/b = 0.5) are shown in Fig. 4.
For comparison, the results of the shell and plate elements based on the layerwise theory (Lee and
Saravanos, 2000) and the results of the continuum element obtained from Msc/ABAQUs commercial
software have been employed. In Fig. 4, the normalized electric potential is ¢* = ¢ X d3; x 10°/h and the
normalized deflection is: w* = 100 x w/h, respectively, where / is the total thickness of the plate. The finite
element mesh is the same with that of Lee and Saravanos’s shell element, i.e. 10 x 5, where 10 equal di-
visions were used along the plate length direction. The mesh of Lee and Saravanos’s plate element is 20 x
10. From this figure, it can be found that the present results agree with other three kinds of results very well
for the different kinds of applied electric potentials although the plate is relatively thick.
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Fig. 3. Geometry of a clamped plate with an attached piezoelectric layer.
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Fig. 4. Comparison of displacements under active electric potentials of a clamped plate.
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When the piezoelectric layer is used as a sensor, the centerline deflections are shown in Fig. 6. Also, the
generated electric potentials due to thermal deformation in this case are shown in Fig. 6. To reflect the
severe variation of the electric potential near the clamped end, the element size is changed to be quite small
near the fixed end. From these two figures, it can be observed that the present results are very near other
three results. From Fig. 6, by comparing with the maximum electric potential at the fixed end given by the
continuum element of Msc/ABAQUS, the present FEM scheme can yield the closer results than those of the
shell and plate elements (Lee and Saravanos, 2000). Further, comparing Fig. 5 with Fig. 4, it can be found
that the deflection becomes a little lower due to the transformation of mechanical energy to electric energy.
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Fig. 5. Comparison of thermally induced sensory displacements of a clamped plate.

In the above computation, ds; is assumed to be zero. When ds; is set to be equal to 5, the deflection results
and the electrical potentials of sensors on the centerline are also shown in Figs. 5 and 6. From these figures,
when d;, changes from zero to the value of ds;, it can be found that the maximum deflection of plate
becomes smaller, and the electrical potentials of sensors become higher. The reason is that more mechanical
energy has been exchanged into the electrical energy. The deformation configuration of plate is shown in
Fig. 7. Investigation of this figure reveals that there is severe bending deformation along the y-axis besides
that along the x-axis due to the low bending stiffness (0° ply) in the y-axis direction. Then when ds, is not
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Fig. 6. Comparison of thermally induced sensory electric potentials of a clamped plate.
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Fig. 7. Deformation configuration of a clamped plate.

equal to zero, the bending deformation in the y-axis direction can lead to the increase of the electrical
potential of sensors, consequently the mechanical energy becomes lower further and the deformation of the
plate decreases. In this case, the “induced-strain” approaches, which neglect the coupling of mechanical
and electric effects, may lead to the larger deflection of plate due to no loss of the mechanical energy, and
then the resulted electrical potentials from the larger deflection may also be higher.

3.3. Static and dynamic (FRF) piezoelectric responses

The work (Keilers and Chang, 1995) has also been employed for checking the present method. A
clamped beam with actuator and sensor near the fixed end is analyzed. The dimensions of the beam of
[0/ + 45/ — 45], are shown in Fig. 8. The materials constants of T300/976 composite are: E1; = 150.0 GPa,
E» =9.0 GPa, Gi» = Gi3 = 7.1 GPa, Gy = 2.5 GPa, v, = 0.3 and p = 1600 kg/m*. The thickness of one
lamina and the piezoelectrics is 0.127 mm. The material properties of the piezoelectric layer are: E;; = 63.0
GPa, E» = 63.0 GPa, G5 = Gj3 = Gy = 24.2 GPa, v, = v13 = v23 = 0.30, p = 7600 kg/m®, p3; = 19.5 nF/
m and d3; = d3; = —170.0 pm/V.

Twenty nine-node elements along the length direction of the beam are used in which three elements are
used for the actuator and sensor portion. The results of the potential of sensors under the static actuator
load are first validated as shown in Fig. 9. Investigation of Fig. 9 reveals that there is a linear relation-
ship between the applied actuator voltage and the produced sensor potential. Also, compared with the

Top View
35.6 cm

4 |
so8em| | T300/976[0/+45/-45],
v

—w 5.08 cm rﬁ Side view
Sensors

Actuators

»‘ MLS cm

Fig. 8. Geometry of a clamped beam with surface attached actuators and sensors.



8750 H. Fukunaga et al. | International Journal of Solids and Structures 38 (2001) 8735-8752

3.5
3.0 F Present
L ® Experiment by Ha et al (1992)
P O Beam Element by Keilers and Chang (1995)
DL L -
E 20 °
IS
= r °
= 1.5 - L4
4 °
= r .
<5} .-
v 10 e ®
L 5
05
0.0 L | L | L | L | L
0 10 20 30 40 50

Actuator Voltage

Fig. 9. Comparison of induced sensor voltages due to static actuator voltages.

experimental results, the present FEM model, i.e. a fully linear model, can yield more accurate results than
those of the beam element (Keilers and Chang, 1995). It is obvious that the plate theory is a more detailed
model than a 2D beam model and consequently produces more detailed results.

When the actuators is applied the harmonic dynamic input, i.e. ¢, sin(wt), the produced frequency
response function of the sensor potential ¢g are also computed. To reduce the computational amount of
the analysis of frequency response function, here the modal superposition technique has been adopted. In
the present example, the assumption of no damping is employed. Furthermore, for computing the FRF, the
first 60-order modal data of the FEM model are employed in the modal superposition technique in FRF
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Fig. 10. Comparison of induced sensor voltages due to harmonic actuator voltages.
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analysis. The amplitude (normal) of the complex FRF of ¢g are normalized by the actuator input as
follows: G = |¢g|/|¢s]- The FRF of sensor potentials of the first four bending modes are shown in Fig. 10
by comparing with the experimental results of Keilers and Chang (1995). From this figure, the reasonable
present results can be identified.

4. Conclusions

The development of mathematical models to describe the static or dynamic behavior of composite
adaptive structures with piezoelectric actuators and sensors has been presented. The present research has
fulfilled the following targets: first, based on a simple higher-order plate theory, a C°-type finite element has
been constructed through the introduction of two artificial variables and the penalty function method;
second, the coupling effects of the mechanical and electric fields have been included starting from the
general variational framework. Good correlations have been obtained between the developed finite element
model and alternative solutions or experimental results in previous researches for various problems. The
computational accuracy and efficiency of the present model have been illustrated. The application of the
present FEM model for our other researches, e.g. the damage identification, will be reported in the near
future.
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